Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats

نویسندگان

  • Ji Yon Shin
  • Jung Min Lee
  • Heon Sub Shin
  • Sang Yong Park
  • Jung Eun Yang
  • Somi Kim Cho
  • Tae-Hoo Yi
چکیده

The glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Despite combination treatments of radiation and chemotherapy, the survival periods are very short. Therefore, this study was conducted to assess the potential of ginsenoside F2 (F2) to treat GBM. In in vitro experiments with glioblastoma cells U373MG, F2 showed the cytotoxic effect with IC50 of 50 μg/mL through apoptosis, confirmed by DNA condensation and fragmentation. The cell population of cell cycle sub-G1 as indicative of apoptosis was also increased. In xenograft model in SD rats, F2 at dosage of 35 mg/kg weight was intravenously injected every two days. This reduced the tumor growth in magnetic resonance imaging images. The immunohistochemistry revealed that the anticancer activity might be mediated through inhibition of proliferation judged by Ki67 and apoptosis induced by activation of caspase-3 and -8. And the lowered expression of CD31 showed the reduction in blood vessel densities. The expression of matrix metalloproteinase-9 for invasion of cancer was also inhibited. The cell populations with cancer stem cell markers of CD133 and nestin were reduced. The results of this study suggested that F2 could be a new potential chemotherapeutic drug for GBM treatment by inhibiting the growth and invasion of cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Regression of Glioblastoma Multiforme is Time Dependent in Wild-Type Rat Xenograft Model

Introduction: Glioblastoma multiforme (GBM) is an aggressive case of primary brain cancer which remains among the most fatal tumors worldwide. Although, some in vitro and in vivo models have been developed for a better understanding of GBM behavior; a natural model of GBM would improve the efficiency of experimental models to human GBM tumors. We aimed at the present study to examine the surviv...

متن کامل

The Role of Protein Kinase B Signaling Pathway in Anti-cancer Effect of Rolipram on Glioblastoma Multiforme: An In Vitro Study

Introduction: The mechanism of putative cytotoxicity of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone (rolipram), a specific phosphodiesterase-4 (PDE4) inhibitor, on glioblastoma multiforme (GBM) is almost unknown. This study aimed to investigate the role of protein kinase B (Akt) pathway in the cytotoxic effect of rolipram on human GBM U87 MG cell line and tumor-initiating cells (TICs) ...

متن کامل

O27: Interaction of Cancer Stem Cells and Microglia in Glioblastoma Multiforme

Malignant gliomas are highly invasive brain tumors with the occurrence of multiple microglia/macrophages in the tumor microenvironment. Macrophages/microglia that found in glioma microenvironment, as tumor-infiltrating immune cells, can play a harmful role in tumor progression. In addition, glioblastoma multiforme (GBM) contains multiple aberrant differentiation and tumorigenic cancer stem cell...

متن کامل

Effect of Foretinib on Matrix Metalloproteinase-2 (MMP2) Expression in Glioblastoma

Background: The most malignant form of infiltrating astrocytoma, glioblastoma multiforme (GBM), is one of the most aggressive human cancers. Foretinib diminished GBM cell invasion by downregulating the expression of matrix metalloproteinase 2 (MMP2). The study aimed to examine the anti-tumor activity of foretinib and to test its effect on MMP2 expression in T98 cells. Materials and methods: T9...

متن کامل

Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression.

PURPOSE Glioblastoma multiforme is a deadly primary brain cancer. Because the tumor kills due to recurrences, we tested the hypothesis that a new treatment would lead to immunological memory in a rat model of recurrent glioblastoma multiforme. EXPERIMENTAL DESIGN We developed a combined treatment using an adenovirus (Ad) expressing fms-like tyrosine kinase-3 ligand (Flt3L), which induces the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012